Copyright © Nakatsugawa Laboratory All rights reserved.

研究業績

査読付論文

Tuning conduction properties and clarifying thermoelectric performance of P-type half-heusler alloys TiNi1-xCoxSn (0≦x≦0.15)
K.Yamazaki, S.Sam, Y.Okamoto, and H. Nakatsugawa, Solid State Sciences, 157, 107708 (2024).
Thermal conductivity reduction and crystal properties evolution in iron silicides induced by doping
S.Sam, K.Yamazaki, and H. Nakatsugawa, Solid State Communications, 394, 115700 (2024).
Insight into phase stability and thermoelectric properties of semiconducting iron silicides with manganese substitution: β-Fe1-xMnxSi2 (0≦x≦0.05)
S.Sam, U.Farooq, R.Oshita, and H. Nakatsugawa, Journal of Physics and Chemistry of Solids, 194, 112224 (2024).
Structure relations with transport properties in p-type thermoelectric materials: Iron silicides
S.Sam, U.Farooq, M.Namba, K.Yamazaki, and H. Nakatsugawa, Journal or Alloys and Compounds, 989, 174367 (2024).
Sb置換されたTiNiSnハーフ・ホイスラー合金の熱電特性と電子構造
山﨑 航佑, 中津川 博, 岡本 庸一, 日本熱電学会誌, 20 (2), 75-81 (2023).
Investigation of phase fraction in α-Fe2Si5, ε-FeSi, and β-FeSi2 thermoelectric materials doped with Co and Ni
S.Sam, K.Yamazaki, and H. Nakatsugawa, Solid State Communications, 371, 115287 (2023).
Erratum: Crystal structure, magnetism, and thermoelectric properties of Nd1-xSrxFeO3-δ (0.1≦x≦0.9)[Jpn.J.Appl.Phys. 62, 043001 (2023)]
H. Nakatsugawa, Y.Kamatani, Y.Okamoto, and C.H.Hervoches, Jpn. J. Appl. Phys., 62 (6), 069401 (2023).
Improved Thermoelectric Performance of Co-Doped β-FeSi2 by Ni Substitution
S.Sam, H. Nakatsugawa, and Y.Okamoto, Materials Advances, 4 (13), 2821-2830 (2023).
Crystal structure, magnetism, and thermoelectric properties of Nd1-xSrxFeO3-δ (0.1≦x≦0.9)
H. Nakatsugawa, Y.Kamatani, Y.Okamoto, and C.H.Hervoches, Jpn. J. Appl. Phys., 62 (4), 043001 (2023).
Effect of Ni Substitution on Thermoelectric Properties of Bulk β-Fe1-xNixSi2 (0≦x≦0.03)
S.Sam, S.Odagawa, H. Nakatsugawa, and Y.Okamoto, Materials, 16 (3), 927 (2023).
Optimization of Co additive amount to improve thermoelectric properties of β-FeSi2
S.Sam, H. Nakatsugawa, and Y.Okamoto, Jpn. J. Appl. Phys., 61 (11), 111002 (2022).
Effect of Sb substitution on structural, morphological and electrical properties of BaSnO3 for thermoelectric application
P. Rajasekaran, Y. Kumaki, M. Arivanandhan, M. S. Ibrahim Khaleeullah, R. Jayavel, H. Nakatsugawa, Y. Hayakawa, and M. Shimomura, Physica B: Condensed Matter, 597, 412387 (2020).
Thermoelectric Properties of Heusler Fe2TiSn Alloys
H. Nakatsugawa, T.Ozaki, H.Kishimura, and Y. Okamoto, Journal of Electronic Materials, 49 (5), 2802-2812 (2020).
High-temperature thermoelectric properties of Pr1-xSrxFeO3 (0.1≦x≦0.7)
H. Nakatsugawa
, M. Saito, and Y. Okamoto, Materials Transactions, 60 (6), 1051-1060 (2019).
Proposal of new fabrication method for metal nano-dots -Electric current application in electrolyte solution-
Y. Okamoto, K.Nimura, H. Nakatsugawa, and H.Miyazaki, Journal of the Japan Society of Powder and Powder Metallurgy, 65 (9), 548-553 (2018).
High-temperature thermoelectric properties of Pr1-xSrxFeO3 (0.1≦x≦0.7)
中津川 博
, 齋藤 美和, 岡本 庸一, 日本熱電学会誌, 15 (1), 3-13 (2018).
High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1-xFexO3(0≦x≦1)
H. Nakatsugawa, M.Saito, and Y. Okamoto, Journal of Electronic Materials, 46 (5), 3262-3272 (2017).
P-Type Thermoelectric Properties of Pr1-xSrxMnO3(0.1≦x≦0.3) and La1-xSrxFeO3(0.1≦x≦0.3)
中津川博, 窪田正照, 齋藤美和, 日本金属学会誌, 79 (11), 597-606 (2015).
Thermoelectric and Magnetic Properties of Pr1-xSrxMnO3 (0.1≦x≦0.7)
H. Nakatsugawa, M. Kubota, and M. Saito, Materials Transactions, 56 (6), 864-871 (2015).
Electric Current Dependence of a Self-Cooling Device Consisting of Silicon Wafers Connected to a Power MOSFET
H. Nakatsugawa, Y. Okamoto, T. Kawahara, and S. Yamaguchi, Journal of Electronic Materials, 43 (6), 1757-1767 (2014).
Self-cooling on power MOSFET using n-type Si wafer
H. Nakatsugawa, T. Sato, Y. Okamoto, T. Kawahara, and S. Yamaguchi, 9th European Conference on Thermoelectrics AIP Conference Proceedings, 1449, 41-46 (2013).
Optimisation of the Solid Oxide Fuel Cell (SOFC) cathode material Ca3Co4O9-δ
A. Rolle, S. Boulfrad, K. Nagasawa, H. Nakatsugawa, O. Mentre, J. Irvine, S. Daviero-Minaud, Journal of Power Sources, 196 (17), 7328-7332 (2011).
Thermoelectric Properties of Single-Crystalline SiC and Dense Sintered SiC for Self-Cooling Devices
S. Fukuda, T. Kato, Y. Okamoto, H. Nakatsugawa, H. Kitagawa, and S. Yamaguchi, Jpn. J. Appl. Phys., 50 (3), 031301 (2011).
Texture development of Ca3Co4O9 thermoelectric oxide by high temperature plastic deformation and its contribution to the improvement in electric conductivity
H.Fukutomi, Y.Konno, K.Okayasu, M.Hasegawa, H.Nakatsugawa, Materials Science and Engineering A, 527, 61-64 (2009).
The Electrochemical and thermal performances of Ca3Co4O9-δ as a cathode material for IT-SOFCs
K.Nagasawa, O.Mentre, S.Daviero-Minaud, N.Preux, A.Rolle, P.Roussel, and H.Nakatsugawa, ECS Transactions Proceedings of “Solid Oxide Fuel Cells 11 (SOFC-XI)” Vienna, Austria, 25 (2), 2625-2630 (2009).
Ca3Co4O9-δ: A Thermoelectric Material for SOFC Cathode
K.Nagasawa, S.Daviero-Minaud, N.Preux, A.Rolle, P.Roussel, H.Nakatsugawa, and O.Mentre, Chemistry of Materials, 21 (19), 4738-4745 (2009).
The Effects of Polysilastyrene and Au Additions on the Thermoelectric Properties in β-SiC/Si Composites
H.Nakatsugawa, K.Nagasawa, Y.Okamoto, S.Yamaguchi, S.Fukuda and H.Kitagawa, Journal of Electronic Materials, 38 (7), 1387-1391 (2009).
Deformaiton and texture behaviors of Co-oxides with misfit structure under high temperature compression
H.Fukutomi, K.Okayasu, Y.Konno, E. Iguchi, H.Nakatsugawa, Ceramic Engineering and Science Proceedings. 10 ed., 29, 41-50 (2008).
Thermoelectric Properties and Crystal Structures of Au Doped SiC/Si Composites
K.Nagasawa, H.Nakatsugwa and Y.Okamoto, Proceedings of the 6th European Conference on Thermoelectrics (ECT2008), 2-4 July, P1-16-1 – P1-16-4 (2008).
Thermoelectric Properties of Pb and Sr Doped Ca3Co4O9
H.Nakatsugwa, H.M.Jeong, N.Gomi, H.Fukutomi, and R.H.Kim, Advances in Electronic Ceramics, 28 (8), 171-183 (2008).
Thermoelectric and Magnetic Properties of [(Ca1-xPbx)2CoO3.1]0.62CoO2 (0≦x≦0.03)
H.Nakatsugwa, H.M.Jeong, R.H.Kim and N.Gomi, Jpn. J. Appl. Phys., 46 (5A), 3004-3012 (2007).
Thermoelectric properties of Pb doped [Ca2CoO3.1]0.62CoO2
H.Nakatsugwa, H.M.Jeong, R.H.Kim and N.Gomi, Proceedings of the 25th International Conference on Thermoelectrics (ICT2006), 6-10 August, 689-692 (2006).
Crystal structure, electric and magnetic properties in NaxCoO2
K.Nagasawa and H.Nakatsugawa, Proceedings of the Symposia of the 8th IUMRS International Conference on Advanced Materials (IUMRS-ICAM), October 8-13, 29, 2809-2812 (2004).
Evidence for the two-dimensional hybridization in Na0.79CoO2 and Na0.84CoO2
H.Nakatsugawa and K.Nagasawa, Journal of Solid State Chemistry, 177, 1137-1145 (2004).
Crystal structure, electric and magnetic properties in NaxCoO2
K.Nagasawa and H.Nakatsugawa, Proceedings of the 22nd International Conference on Thermoelectrics (ICT2003), 17-21 August, 223-226 (2003).
Electronic structures of Sr1-xLaxRuO3
H.Nakatsugawa, E.Iguchi, and Y.Oohara, Advances in Quantum Chemistry, 42, 215-222 (2003).
Thermoelectric Properties (Resistivity and Thermopower) in Bi1.5Pb0.5Ca2-xMxCo2O8-δ (M=Sc3+, Y3+ or La3+)
E.Iguchi, S.Katoh, H.Nakatsugawa, and F.Munakata, Journal of Solid State Chemistry, 167, 472-479 (2002).
Electronic structures and chemical bonding of Bi2-xPbxSr3Co2O9 (x=0.0 and 0.5)
H. Nakatsugawa and E. Iguchi, Materials Letters, 53, 221-226 (2002).
Electrical transport properties in LiMn2O4, Li0.95Mn2O4, and LiMn1.95B0.05O4 (B=Al or Ga) around room temperature
E. Iguchi, Y. Tokuda, H. Nakatsugawa and F. Munakata, Journal of Applied Physics, 91, 2149-2154 (2002).
Electronic structures and magnetic properties in Sr1-xLaxRuO3 (0.0≦x≦0.5)
H. Nakatsugawa, E. Iguchi, and Y. Oohara, Journal of Physics: Condensed Matter, 14, 415-425 (2002).
Electronic and Magnetic Properties due to Co ions in La0.9Sr0.1Fe1-xCoxO3
H. Nakatsugawa and E. Iguchi, Journal of Solid State Chemistry, 159, 215-222 (2001).
Thermoelectric Properties in Bi2-xPbxSr3-yYyCo2O9-δ Ceramics
E. Iguchi, T. Itoga, H. Nakatsugawa, F. Munakata and K. Furuya, Journal of Physics D: Applied Physics, 34, 1017-1024 (2001).
Small polarons in La2/3TiO3-δ
W. H. Jung, H. Wakai, H. Nakatsugawa and E. Iguchi, Journal of Applied Physics, 88, 2560-2563 (2000).
Study of Electronic Structures in LaCo1-xTixO3 (x=0, 0.05 and 0.15) Using Discrete-Variational-Xα Cluster Method
H. Nakatsugawa and E. Iguchi, Jpn. J. Appl. Phys., 39, 1186-1189 (2000).
Correlation between hopping conduction and transferred exchange interaction in La2NiO4+δ below 300 K
E. Iguchi, H. Satoh, H Nakatsugawa and F. Munakata, Physica B Condensed Matter, 270, 332-340 (1999).
La0.9(Sr1-xCax)1.1CoO4の熱電変換材料への応用
中津川博, 井口栄資, 日本金属学会誌, 63, 1393-1399 (1999).
The Origin of the Change in Type of the Majority Carrier in LaCo1-xTixO3 (0.05≦x≦0.15)
H. Nakatsugawa and E. Iguchi, Journal of Physics: Condensed Matter, 11, 1711-1722 (1999).
Small Polaron Hopping Conduction in Samples of Ceramic La1.4Sr1.6Mn2O7.06
H. Nakatsugawa, E. Iguchi, W. H. Jung and F. Munakata, Australian Journal of Physics, 52, 187-195 (1999).
Polaronic Conduction in La2-xSrxCoO4 (0.25≦x≦1.10) below Room Temperature
E. Iguchi, H. Nakatsugawa and K. Futakuchi, Journal of Solid State Chemistry, 139, 176-184 (1998).
Electrical transport in La1-xSrxCoO3 (0.03≦x≦0.07) below 60 K
E. Iguchi, K. Ueda and H. Nakatsugawa, Journal of Physics: Condensed Matter, 10, 8999-9013 (1998).
Electrical Transport in Semiconducting (LaMn1-xTix)1-γO3 (x≦0.05)
W. H. Jung, H. Nakatsugawa and E. Iguchi, Journal of Solid State Chemistry, 133, 466-472 (1997).
Transition Phenomenon in Ti2O3 using DV-Xα Cluster Method and Periodic Shell Model
H. Nakatsugawa and E. Iguchi, Physical Review B, 56, 12931-12938 (1997).
Electronic Structures in VO2 Using the Periodic Polarizable Point-Ion Shell Model and DV-Xα Method
H. Nakatsugawa and E. Iguchi, Physical Review B, 55, 2157-2163 (1997).
The NiO (001) Surface Structure Calculated by a Two-Dimensional Polarizable Point-Ion Shell Model
H. Nakatsugawa and E. Iguchi, Surface Science, 357-358, 96-101 (1996).
Application of a Polarizable Point-Ion Shell Model to a Two-Dimensional Periodic Structure: The NiO (001) Surface
E. Iguchi and H. Nakatsugawa, Physical Review B, 51, 10956-10964 (1995).